Математичекие основы теории систем

1010

0011

1110

1011

0

1

2

3

4

5

6

7

1

0-00

У

У

2

-100

У

У

3

-011

У

У

4

11-0

У

У

5

1-10

У

У

6

101-

У

У

Нахождение существенных импликант. Если в каком – либо из столбцов таблицы меток стоит только одна метка, то первичная импликанта, стоящая в соответствующей строке, называется существенной импликантой. Все существенные импликанты запоминаются. А из таблицы меток исключаются строки, соответствующие существенным импликантам, и столбцы минитермов «покрываемых» этими существенными импликантами.

Существенными являются импликанты 0-00 и -011. Поэтому вычеркиваем 1-ю и 3-ю строки и столбцы: 1, 5, 2, 7.

Составим сокращенную таблицу меток:

Таблица 2.2.3

1100

1010

1110

-100

У

11-0

У

У

1-10

У

У

101-

У

Выбор минимального покрытия. Исследуется результирующая таблица. Выбирается такая совокупность первичных импликант, которая иссключает метки во всех столбцах (по крайней мере по одной в каждом столбце). При нескольких возможных вариантах такого выбора отдается предпочтение варианту покрытия с минимальным суммарным числом букв в простых импликантах, образующих покрытие.

С учетом существенных импликант получим две МДНФ для этой функции имеет вид:

1.

2.

Число букв составляющих простые импликации в каждом варианте одинаково. Во втором варианте на одно отрицание меньше, поэтому берем его за искомое:

2.3.3 Пример минимизации картами Карно

Данный метод для минимизации функции в коде Грея. В каждую ячейку записывается значение функции на данном наборе. Затем выделяются группы ячеек размером 2a*2b , где a, bε[0,1,2…], в которых функция принимает значение «1». В каждую группу должно входить максимальное число ячеек. Таких групп должно быть минимальное количество. Каждой группе будет соответствовать конъюнктивный член размером n-a-b. Для получения МДНФ каждую группу надо просматривать в горизонтальном и вертикальном измерениях, с нахождения таких переменных, которые не меняют своего значения в пределах группы. Если переменная не меняет своего нулевого значения, то она вписывается в конъюнкцию с отрицанием, если не меняет своего единичного значения, то вписывается без отрицания. Если имеются разорванные группы, то карту Карно надо свернуть в цилиндр. На неопределенных наборах следует доопределить нулем или единицей, в соответствии с выбираемой группой ячеек. Каждая единичная ячейка должна быть включена хотя бы в одну группу.

Составим карту Карно для функции У3 (рисунок 2.3.1).

x3x4

x1x2

00

01

11

10

00

1

1

01

1

11

1