Черные дыры

В 1971 году английский теоретик Роджер Пенроуз доказал, что из черных дыр, обладающих спином и (или) зарядом, можно извлекать энергию. Если в эргосферу запустить, к примеру, шарик, то он разорвется. При этом часть его попадет за горизонт событий, тогда как другая окажется во внешнем пространстве, причем энергия этой части будет больше, чем у всего шарика, первоначально попавшего в эргосферу. Таким образом, из черной дыры Керра эта потеря энергии выразится в замедлении вращения.

Черные дыры с электрическим зарядом

Начиная с середины ХХ в. разработку теории электромагнетизма, Джеймс Клерк Максвелл располагал большими количествами информации об электрическом и магнитном полях. В частности, удивительным был тот факт, что электрические и магнитные силы убывают с расстоянием в точности так же, как и сила тяжести. И гравитационные, и электромагнитные силы – это силы большого радиуса действия. Их можно ощутить на очень большом удалении от их источников. Напротив, силы, связывающие воедино ядра атомов, - силы сильного и слабого взаимодействий – имеют короткий радиус действия. Ядерные силы дают о себе знать лишь в очень малой области, окружающей ядерные частицы.

Большой радиус электромагнитных сил означает, что физик, находясь далеко от черной дыры, может предпринять эксперименты для выяснения, заряжена эта дыра или нет. Если у черной дыры имеется электрический заряд (положительный или отрицательный) или магнитный заряд (соответствующий серному или южному магнитному полюсу), то находящийся вдалеке физик способен при помощи чувствительных приборов обнаружить существование этих зарядов. Таким образом, кроме информации о массе не теряется также информация о заряде черной дыры.

Во время первой мировой войны Г. Райснер и Г. Нордстрём открыли решение эйнштейновских уравнений гравитационного поля, полностью описывающее «заряженную» черную дыру. У такой черной дыры может быть электрический заряд (положительный и отрицательный) и/или магнитный заряд (соответствующий северному или южному магнитному полюсу). Если электрически заряженные тела – дело обычное, то магнитно заряженные – вовсе нет. Тела, у которых есть магнитное поле (например, обычный магнит, стрелка компаса, Земля), обладают обязательно и северным и южными полюсами сразу. До самого последнего времени большинство физиков считали, что магнитные полюсы всегда встречаются только парами. Однако в 1975 году группа ученых из Беркли и Хьюстона объявила, что в ходе одного из экспериментов ими открыт магнитный монополь. Если эти результаты подтвердятся, то окажется, что могут существовать и отдельные магнитные заряды, т. е. что северный магнитный полюс может существовать отдельно от южного, и обратно. Решение Райснера-Нордстрёма допускает возможность существования у черной дыры магнитного поля монополя. Независимо от того, как черная дыра приобрела свой заряд, все свойства этого заряда в решении Райснера-Нордстрёма объединяются в одну характеристику – число Q. При этом геометрия пространства-времени в решении Райснера-Нордстрема не зависит от природы заряда. Он может быть положительным, отрицательным, соответствовать северному магнитному полюсу или южному – важно лишь его полное значение, которое можно записать как |Q|. Итак, свойства черной дыры Райснера-Нордстрёма зависят лишь от двух параметров – полной массы дыры М и ее полного заряда |Q| (иными словами, от его абсолютной величины).

Чтобы проще подойти к пониманию особенностей решения Райснера-Нордстрёма, рассмотрим обычную черную дыру без заряда. Как следует из решения Шварцшильда, такая дыра состоит из сингулярности, окруженной горизонтом событий. Теперь представим себе, что мы придали этой черной дыре небольшой электрический заряд. Как только у дыры появился заряд, мы должны обратиться к решению Райснера-Нордстрёма для геометрии пространства-времени. В решении Райснера-Нордстрёма имеются два горизонта событий. Именно, с точки зрения удаленного наблюдателя, существуют два положения на разных расстояниях от сингулярности, где время останавливает свой бег. При самом ничтожном заряде горизонт событий, находившийся ранее на «высоте» 1 швардшильдовского радиуса, сдвигается немножко ниже к сингулярности. Но еще более удивительно то, что сразу же вблизи сингулярности возникает второй горизонт событий. Таким образом, сингулярность в заряженной черной дыре окружена двумя горизонтами событий – внешним и внутренним.