Черные дыры

Если мы будем увеличивать заряд черной дыры, то внешний горизонт событий станет сжиматься, а внутренний – расширяться. Наконец, когда заряд черной дыры достигнет значения, при котором выполняет равенство М = |Q|, оба горизонта сливаются друг с другом. Если увеличить заряд еще больше, то горизонт событий полностью исчезнет, и остается «голая» сингулярность. При М < |Q| горизонты отсутствуют, так что сингулярность открывается прямо во внешнюю Вселенную. Такая картина нарушает знаменитое «правило космической этики», предложенное Роджером Пенроузом.

Всякий раз при пересечении горизонта событий пространство и время меняются ролями. Это значит, что в заряженной черной дыре из-за наличия двух горизонтов событий полная смена ролей у пространства и времени происходит дважды.

В ПОИСКАХ ЧЕРНЫХ ДЫР

Объект, который по определению нельзя видеть, естественно, нелегко обнаружить. Как же астрономы собираются искать черные дыры?

Конечно, черную дыру нельзя увидеть с помощью любого доступного астрономам телескопа, начиная от радиотелескопов и кончая (-детекторами. Тем не менее, можно использовать косвенные методы, связанные с теми гравитационными эффектами, которые черная дыра вызывает в окружающем веществе.

Идеальными в этом смысле являются двойные звезды. На рисунке показана пара звезд А и В, вращающихся друг относительно друга. В такой ситуации наблюдатель видит периодическое изменение положения А и В в пространстве. Через определенный промежуток времени звезды А и В возвращаются в исходное положение. Такие пары звезд встречаются довольно часто и называются двойными звездами.

Предположим теперь, что звезды А и В достаточно близки друг к другу в том смысле, что разделяющее их расстояние не сильно превышает сумму их радиусов. Когда звезды так близки, каждая из них стремится оторвать часть вещества с поверхности своей соседки.

Такое взаимодействие носит название приливного взаимодействия. Таким образом, когда звезда В оказывает приливную силу на звезду А, ближайшее к В вещество звезды А начинает перетекать в направлении к В, и наоборот.

Представим теперь ситуацию, когда А является звездой-гигантом, а В – черной дырой. Если предположить, что А достаточно близко к В, то вещество будет перетекать от А к В, но не наоборот. Дело в том, что из черной дыры невозможно извлечь вещество. Вещество, отнятое у А, не попадает сразу в В, а вращается вокруг нее, пока постепенно не поглотится. Так происходит потому, что звезды А и В вращаются друг относительно друга, следовательно, любое вещество, покидающее А, стремится вращаться вокруг В, а не попадать сразу на нее.

Такой непрерывный круговорот вещества образует дискообразную структуру, которая может простираться вокруг черной дыры до расстояний, равных нескольким шварцшильдовским радиусам. Так как падающее на черную дыру вещество представляет собой очень плотный и горячий газ, то этот газ начинает излучать, в основном, рентгеновское излучение. Ряд астрофизиков в 60-е годы разработали представление о таком диске аккреции, окружающем черную дыру в двойной системе. Благодаря недавно возникшей рентгеновской астрономии появились надежды на обнаружение черных дыр указанным способом.

При таком подходе возникает, однако, неопределенность. То, что было сказано до сих пор о черных дырах, относится и к нейтронным звездам. Если звезда В является нейтронной звездой, она так же будет образовывать вокруг себя диск аккреции, испускающий рентгеновское излучение.

Таким образом, если мы обнаружим рентгеновский источник, связанный с двойной системой, в которой одна звезда видима, то все что мы можем сказать, это то, что другая звезда является либо нейтронной звездой, либо черной дырой. Но как узнать, с чем мы имеем дело?

Именно здесь и следует вспомнить о пределе на массу, равном 2М(, для стабильных нейтронных звезд. Если по наблюдениям движения видимые компоненты А мы можем определить массу ее компаньона В и если эта масса окажется меньше 2М(, мы можем сделать вывод, что В является нейтронной звездой. Но если окажется, что масса В существенно больше 2М(, есть основания полагать, что мы имеем дело с черной дырой.

Дополнительной проверкой может стать регистрация флуктуаций рентгеновского излучения от двойного источника. Чем быстрее флуктуации, тем меньше диск аккреции. Поскольку черные дыры более компактны, чем нейтронные звезды, их диски аккреции соответственно несколько меньше. Таким образом, от черной дыры следует ожидать возникновения очень быстрых вариаций рентгеновского излучения.