Записка к расчетам

Полная высота сечения h=h0+a=0.4+0.06=0.46 m.

Принимаем h=0.5 m, h0=0.44 m.

Сечение в I пролете, М=83,46 кН*м.

h0=h-a=0.5-0.06=0.44 m.

Вычисляем : αм=М/ Rb*b*h20=83.46*103/0.9*11.5*106*0.2*0.442=0.208

По таблице 3.1[1] находим η=0,883 и опираем площадь сечения арматуры:

As=M/Rs*h0* η=83.46*103/365*106*0.883*0.44=5.88*10-4 m2.

Принимаем 2 ø12 А-III+2ø16 A-III с Аs=6.28*10-4 m2.

Сечение в среднем пролете, М=69,02 кН*м.

αм=69,02*103/0,9*11,5*106*0,2*0,442=0,172; η=0,905.

Сечение арматуры : As=69.02*103/365*106*0.905*0.44=4.75*10-4 m2.

Принимаем : 2ø12 А-III+2ø14 A-III с Аs=5.34*10-4 m2.

Сечение по средней опоре: М=94,96 кН*м.

αм=94,96*103/0,9*11,5*106*0,2*0,442=0,237; η=0,865.

Сечение арматуры As= 94,96*103/365*0.865*0,44=6.84*10-4 m2;

Принимаем 2ø10 А-III+2ø20 A-III с Аs=7,85*10-4 m2.

Сечение на крайней опоре, М=43,91 кН*м.

Арматура располагается в один ряд: h0=h-a=0.5-0.03=0.47 m.

αм=43,91*103/0,9*11,5*106*0,2*0,472=0,096;

η=0,95.

As=43.91*103/365*106*0.95*0.47=2.69*10-4 m2.

Принимаем : 2 ø14 А-III с Аs=3.08*10-4 m2.

3.8 Расчет прочности ригеля по сечениям, наклонным к продольной оси.

На средней опоре поперечная сила Q=156.8 кН. Диаметр поперечных стержней устанавливаем из условия сверки с продольной арматурой ø=20 мм и принимаем равным ø=5мм с As=0.196*10-4 m2 с Rsw=260 МПа.

Число каркасов ----, при этом Asw=2*0.196*10-4=0.392*10-4 m2. Шаг поперечных стержней по конструктивным условиям S=h/3=0.5/3=0.17 m – принимаем S=0.15m. Для всех приопорных участников длиной 0,25l принимаем шаг S=0.15 m, в средней части пролета шаг S=(3/4)h=0.75*0.5=0.375=0.4 m.

Вычисляем : qsw=Rsw*Asw/S=260*106*0.392*10-4/0.15=67.95 кН/м.

Qbmin=φb3*Rbt*b*h0=0.6*0.9*0.9*106*0.2*0.44=42.77 кН.

Qsw=67.95 кН*м>Qbmin/2h0=42.77*103/2*0.44=48.6 кН/м – ус-ие удолетворяется.

Требование: Smax= φlτRbtb*b*h02/Qmax=1.5*0.9*0.9*106*0.2*0.442/156.8*103=0.3 m>S=0.15 m – выполняется.

При расчете прочности вычисляем: Mb= φlτRbtb*b*h02=2*0.9*0.9*106*0.2*0.442=62.73 кН*м. Поскольку q1=g+φ/2=(24.95+27.36/2)*103=38.63 кН*м>0.56qsw=0.56*67.95*103=38.05 кН*м, вычисляем значение (с) по qτ:

с= √Мв/(q1+qsw)=√62.73*103/(38.63+67.95)*103=0.77 m<3.33h0=3.33*0.44=1.47m. Тогда Qb=62.73*103/0.77=81.47 кН.

Поперечная сила в вершине наклонного сечения:

Q=Qmax-q1*c=156.8*103-38.63*103*0.77=127.05 кН.

Длина проекции расчетного наклонного сечения:

С0=√Мb/qsw=√62.73*103/67.95*103=0.96 m>2h0=2*0.44=0.88 m – принимаем С0=0,88 м.

Тогда Qsw=qsw*c0=97.95*103*0.88=59.8 кН.

Условие прочности: Qb+Qsw=(81.47+59.8)*103=141.27 кН>Q=127.05 кН – удовлетворяется.

Производим проверку по сжатой наклонной полосе:

μsw=Asw//b*S=0.392*10-4/0.2*0.15=0.0013;

α=Es/Eb=170*109/27*109=6.13;

φw1=1+5*α* μw1=1+5*6.13**0.0013=1.04;

φb1=1-0.01*Rb=1+0.01*0.9*11.5=0.9.

Условие прочности: Qmax=156.8 кН<0.3φw1* φb1*Rb*h0=0.3*1.04*0.9*0.9*11.5*106*0.2*0.44=

255.75 кН – удовлетворяется.

3.9 Построение эпюры арматуры.

Эпюру арматуры строим в такой последовательности:

Рассмотрим сечение I пролета арматуры: 2 ø12 А-III+2ø16 A-III с Аs=6,28*10-4 m2.

Определяем момент, воспринимаемый сечением с этой арматурой, для чего рассчитываем необходимые параметры:

h0=h-a=0.5-0.06=0.44 m;

μ=As/b*h0=6.28*10-4/0.2*0.44=0.0071;

ζ=μ*Rs/Rb=0.0071*365*106/0.9*11.5*106=0.25;

η=1-0.5*0.25=0.875;

Ms=As*Rs*h0* η=6.28*10-4*365*106*0.875*0.44=88.25 кН*м.

Арматура 2ø12 А-III обрывается в пролете, а стержни 2ø16 А-III с As=4.02*10-4 m2 доводятся до опор.

Определяем момент, воспринимаемый сечением с этой арматурой:

h0=h-a=0.5-0.03=0.47 m;

μ=As/b*h0=4.02*10-4/0.2*0.47=0.0043;

ζ=μ*Rs/Rb=0.0043*365*106/0.9*11.5*106=0.152;

η=1-0.5*0.152=0.924;

Ms=As*Rs*h0* η=4.02*10-4*365*106*0.924*0.47=63.72 кН*м.

Графически определяем точки теоретического обрыва двух стержней ø12 А – III. Поперечная сила в первом сечении Q1=30 кН, во II сечении Q2=40 кН.

Интенсивность поперечного армирования в I сечении при шаге хомутов S=0.15 m равна :

Qsw=Rsw-Asw/S=260*106*0.392*10-4*0.15=67.95 кН/м. Длина анкеровки W1=30*103/2*67.95*103+5*0.012=0.28 m